欢迎来到北京北重伟业电机技术开发欢乐生肖平台官网!

维修世界各国的直流电机

经本公司维修的进口电机因维修质量问题保修两年

服务热线
010-87502930
其他页banner
新闻中心
您的位置:欢乐生肖 > 新闻中心 > 行业新闻

高性能交流伺服电机系统控制策略综述

发布者:wubaiyi2018-03-08

随着电力电子技术、电机制造技术、大规模集成电路和微处理器控制技术的迅猛发展,人们对交流伺服控制产品的性能、功能及性价比的要求越来越高,以永磁同步电动机作为执行机构的交流伺服控制系统在数控机床、机器人、办公自动化设备、大规模集成电路制造、雷达以及柔性制造系统等领域都拥有了广泛的应用。

交流伺服系统作为现代工业设备的重要驱动源之一,是当代工业技术现代化所涉及的核心技术。日本、美国、德国、英国和法国等发达国家掌握着该领域的绝大多数的核心技术,并对我国实行技术封锁,其中决定交流伺服系统性能的关键技术—伺服驱动控制技术,是国外伺服技术封锁的主要部分。随着国内交流伺服电机及驱动器等硬件技术逐步成熟,以软形式存在于控制芯片中的伺服驱动技术成为制约我国高性能交流伺服技术及产品发展的瓶颈。

因此,对数字化交流伺服驱动控制技术进行研究开发自主知识产权的交流伺服系统及运动控制技术,并使其形成产业,为我国装备制造业的发展提供有利的技术保障,具有重大的现实意义和广阔的社会应用前景。

伺服驱动技术的发展现状

高性能伺服系统及其伺服驱动技术的发展史是与伺服电动机有着密切关系的,在近60年的发展历史中,经历了三个主要发展阶段:

20世纪60年代以前,此阶段是以功率步进电机直接驱动为主,多为位置开环控制系统。系统具有响应时间短,驱动部件的外形尺寸小等优点,在电火花加工机床、针式打印机,自动化线等领域获得广泛应用,但同时存在发热大、效率低、易污染环境、不易维修等缺点。

20世纪60~80年代,由于直流伺服电动机具有比交流伺服电动机易于控制、调速性能好等优点,相关理论及技术都比较成熟,因此直流伺服系统在工业及相关领域获得了广泛的应用,伺服系统的位置控制也由开环系统发展成为闭环系统。

进人20世纪90年代后,随着微电子技术的快速发展,电路的集成度越来越高,传感器技术、稀土永磁材料与电动机控制理论等相关支持技术的发展,使得交流伺服控制技术有了长足发展。出现了无刷直流伺服电动机(bldc),交流伺服电动机(pmsm)等多种新型电动机。并逐步取代直流伺服系统在许多高科技领域拥有了非常广泛的应用。交流伺服系统的控制方式迅速向数字控制方向发展,并由硬件伺服转向软件伺服,智能化的软件伺服将成为伺服控制的一个发展趋势。

交流伺服电动机驱动控制策略

以永磁同步电动机为代表的交流伺服电动机模型是强耦合、时变的非线性系统,其控制策略比较复杂,所以交流伺服系统的性能与它所采用的控制策略有着直接的关系。优良的控制策略不但可以弥补硬件设计方面的不足,而且能进一步的提高系统的性能,控制策略在交流伺服中发挥着至关重要的作用。高性能交流伺服系统对控制策略的要求可概括为:不但要使系统具有快的动态响应和高的动、静态精度,而且系统要对参数的变化和扰动具有不敏感性。

具有代表性永磁同步电机的控制策略有以转速开环恒压频比(u/f=常数)控制、经典pid控制、磁场定向控制(矢量控制)为代表的传统控制策略、以直接转矩控制、滑模变结构控制、自适应控制、非线性反馈线性化理论等为代表的现代控制策略和以模糊控制、神经网络控制为代表的智能控制等。

传统控制策略

(1)恒压频比控制

带定子压降补偿的恒压频比控制保证了同步电动机气隙磁通恒定,调节频率给定实现同步改变电机的转速。此种控制策略为开环控制,只控制了电机的气隙磁通,不能调节转矩,容易产生转子振荡和失步等问题。同时由于恒压频比控制依据的是电机的稳态模型,其动态控制性能不高,不适合具有高性能要求的伺服驱动控制场合。

为了获得良好的动态性能,**依据电机的动态数学模型。由于交流永磁同步电动机动态数学模型是非线性、强耦合、时变的多变量系统。要拥有良好的控制性能,需对角速度和电流进行解耦控制,即矢量控制技术。

(2)经典pid控制

pid控制器就是利用比例、积分、微分对系统的误差进行计算得出控制量从而对被控对象进行控制。pid控制器是目前应用*为广泛的调节器,具有结构简单、稳定性好、工作可靠、调整方便等优点,一直以来是工业控制的主要技术之一,能够满足多数伺服控制应用领域。

但是经典的交流伺服同步电动机的三环pid调节控制方式仍然存在一些问题,如调节器参数整定繁琐且误差较大,对系统模型及参数的依赖性较强等,在一些高精度应用场合,很难满足系统要求。

(3)磁场定向控制(id=0)

矢量控制是建立在被控对象准确的数学模型上,使交流电机控制由外部宏观稳态控制深入到电机内部电磁过程的瞬态控制。矢量控制通过坐标变换将交流电机内部复杂耦合的非线性变量变换为相对坐标系为静止的直流变量(电流、磁链、电压等),实现近似解耦控制,并从中找到约束条件,获得某一目标的**控制策略,id=0控制是矢量控制的一种特定的控制策略,在转子坐标系内实现永磁同步电机交直轴电流解耦,由于id、iq双电流闭环的存在,使电机iq电流动态跟随系统力矩给定(te=ktiq,kt为电机力矩系数),实现电机电磁力矩控制。

该控制策略使电机系统具有较好输出力矩线性度,并可获得**线性转矩。同时由于全部电流均用来产生电磁力矩,可以充分利用电机过载能力,提高电机启、制动速度,保证电机具有优良的启、制动性能。

矢量控制技术经历二十多年研究完善历程,在调速系统中应用所获得的性能优异,不论在低速(恒转矩控制模式)还是在高速(恒功率控制模式),其抗扰特性、启制动特性、稳速特性均达到或者超过直流调速系统。但是矢量控制模型及算法比较复杂,实现时需要进行坐标变换等,很难保证电机系统的电压、电流在直、交轴的完全解耦,进而会影响电机系统的动态和效率等指标。

极速快乐8 幸运赛车 吉林快3 秒速时时彩 极速快3 河北快3基本走势 欢乐生肖 欢乐生肖 北京幸运28 极速3分彩